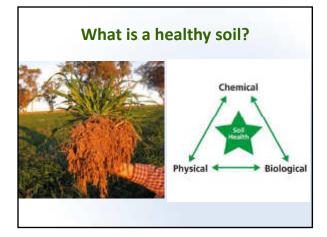
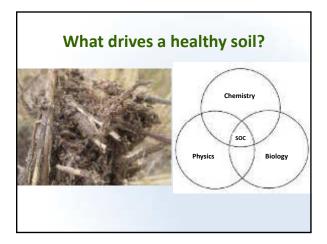
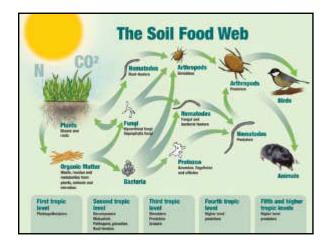
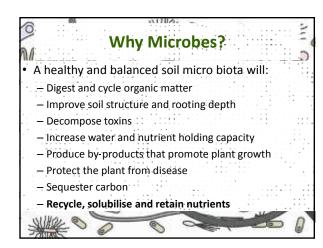
Summary


- Keep soil covered carbon flow
- Minimise soil disturbance
- Inoculate or support AMF

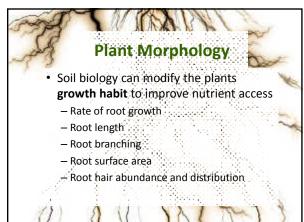

Future Research

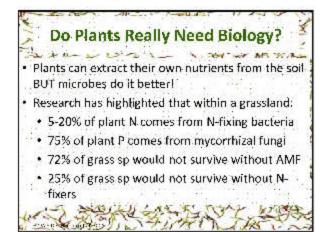
- What are the most suitable methods to:
 - Optimise microbial abundance in agro-ecosystems?
- Optimise sequestration of plant biomass and/or root
- exudates into the stable carbon pool?
- Optimise microbes' ability to acquire and supply nutrients?
- What are the optimum soil characteristics that shift microbial communities toward these processes
- (chemistry, physics, biology)?
- What are the key microbe groups that are most.
- efficient for these processes and how best to use
- them in agro-ecosystems?

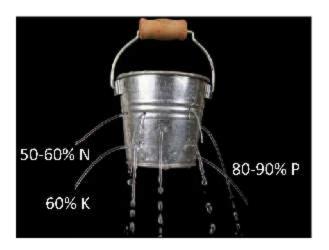


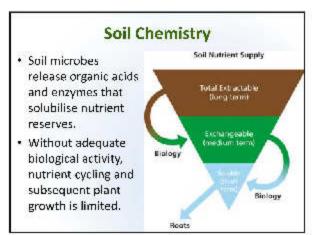


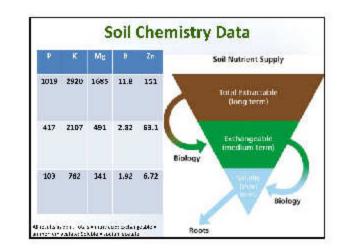

Soil Biology

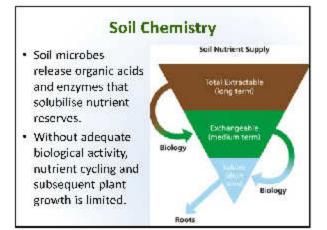

- Beneath the soil surface contains an immense number of living organisms.
 - Algae
 - Bacteria
 - Fungi
 - Protozoa
 - Nematodes
 - Micro and Macro Arthropods
 - Insects
 - Earthworms

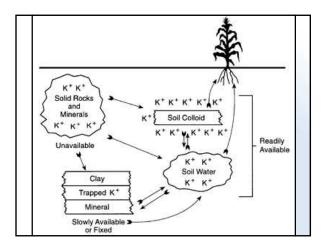





Nutrient Efficiency


- How efficient are we at delivering nutrients to crops?
- How much of our applied nutrients are actually being taken up by plants?
 - N 40 50% of applied N ¹²⁴
 - P 10 20% of applied P


Hearpenant Bernett (1995) "Recision 2000" Choree a rates


K - 40% of applied K¹

Nutrients and Carbon

- Every single time any nutrients are applied, they should be combined with a carbon source (liquid or dry).
- The carbon binds to the nutrients chelating and complexing them, stabilising them, buffering them and improving uptake by plants.

Carbon Protects Biology

- Research findings investigating soil life recovery after:
 - Fumigant application vs
 - Fumigant + composted manure
- Fumigant: **12** weeks later = **little** recuperation of soil function.
- Fumigant + compost = normal biological activity observed within 8-12 weeks.

Dungan, R.S., Ibekwe, A.M. And Yates, S.R. (2003). Effect of propargyl bromide and 1,3dichloropropene on microbial communities in an organically amended soil. FEMS Microbiolo Ecology 42: 75-87.

Fertilisers – Organic vs Inorganic

- 200 kg/ha of nitrogen was added to the soil in the form of:
 - Ammonium nitrate, or

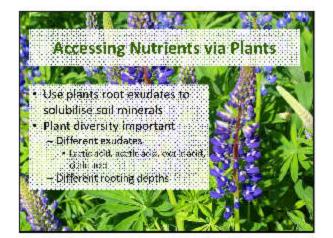
* Marinari, S., Masciandaro, G., Ceccanti, B. and Grego, S. (2000) Influence of organic physical properties. *Bioresource Technology*. 72: 9-17.

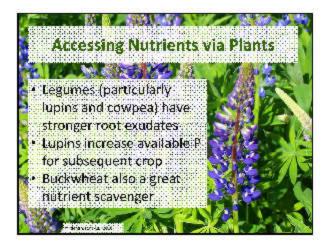
- Dairy manure
- Soil respiration and enzyme activity were higher in the organically amended soil^{*}.
- Increasing carbon in your fertiliser program will increase microbial health irrespective of nutrient content.

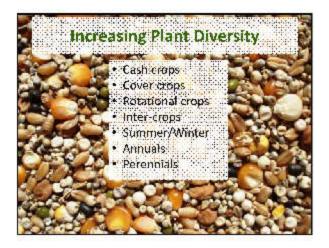
Nutrients and Biology

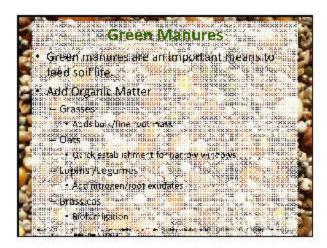
- Excess nutrients can interfere with healthy soil biological function.
- Nutrients should be applied in a **timely** and **appropriate** fashion to ensure surplus nutrition is not flushing through the system having a negative impact on soil life.

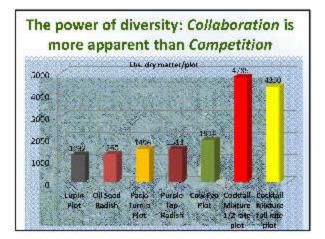
Organic and Inorganic


- Organic inputs buffer Inorganic inputs.
- The message is simple:
- Increasing <u>carbon</u> in your <u>fertiliser</u> programs will increase nutrient efficiency and microbial health <u>no matter</u> what production system you use!
- Just combine it with Carbon!






Mining Minerals with Plants (and microbes)



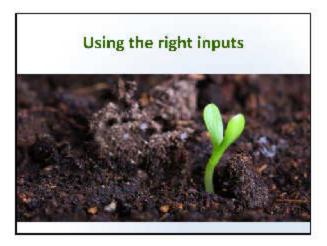
Mycorrhizal Fungi

- A group of fungi that form a symbiotic relationship with plants.
- Plants translocate carbohydrates to the fungi in exchange for nutrients, moisture and protection.
- 80% of all land plants form these associations (90% of our agriculturally important plants).*

(de) P. Koner, P. Freede, M. Konté, M. P. A., Las H. A. Y. (1997) here was a di-based of size manifestic prime in which appendices in second in successful with all discussions. Co. Co. 2011;10:10.

Nutrient and Moisture Access

- AMF are well documented to access soil reserves of P beyond the root zone.
- They also assist other macro-nutrient access – Ca, Mg, K and N.*
- And micro-nutrients Zn, Cu, Fe.*
- AMF also increase drought resistance by accessing moisture in soil micropores that roots cannot access.*
- AMF can also increase tolerance to salinity and heavy metals.²


Organic and Conventional

- Research has highlighted when compared to conventional soils, organically farmed soils have;
 - Higher AMF spores
 - Higher AMF abundance
 - Higher AMF diversity
 - Higher AME colonisation of plant roots

e direction of short Plan of the of the legendarian and direction

 This trend has been identified in numerous research papers in a range of climates, soil types and cropping scenarios.

Soil Amendments

- "To every action there is an equal and opposite. reaction" Anarons investors
- Every management decision will impact soil health in either a positive or negative way.
- Soil life are an ideal way to asses this.
- Guiding Philosophy: Does an input or practice increase or decrease soil biological health?

Biostimulants

- Humates
- Humic Acid
- Fulvic Acid
- Seaweed Extracts
- Liquid Fish
- Molasses/sugars
- Plant Teas
- Green Manures
- Cover Crops

Biofertilisers

Inputs

- Compost
- Liquid Compost Extracts
- Microbial Inoculants
- Manures

Chemical Inputs

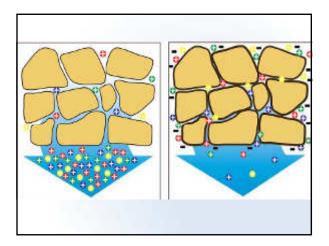
- Fertilisers
- Pesticides

Humates

- What are humates?
- Humates are derived from prehistoric plant. matter.
- Humates have been compressed and preserved as brown coal.
- Also called lignite and leonardite.

Humates

- Contain a huge diversity of carbon compounds including:
 - Humic Acids (alkaline soluble)
 - Fulvic Acids (acid and alkaline soluble)
 - Humins (insoluble fraction)
- Raw humates (brown coals) can be applied at a rate of ~200 kg/ha up to 5 T/ha as long term soil amendment.


Benefits of Humates

- The benefits of humates are numerous and they directly and indirectly improve soil biological health by:
 - Increasing CEC: moisture and nutrient retention
 - Buffering pH extremes
 - Chelating and increasing nutrient availability
 - Buffering excess elements (eg.Na) and heavy metals
 - Detoxifying spil
 - Plant growth stimulation (root exudates)

as high 24 (Mail also, San and Alama Mass - Stars National Stars

Humic Acid

- A biologically active fraction of humates.
- Higher molecular weight than fulvic acid.
- Larger sized molecule so it is more stable/resistant in the soil environment.
- Structurally complex nature and high bioactivity means it is a fantastic fungal food source.
- Ideal for soil application.
 - Can be used as a foliar application though in some instances (with alkaline inputs).

Using Humic Acid

- Alkaline extracted (high pH) so it can be fussy on compatibility with acid fertilisers and chemicals.
- Incompatible with many sulphates, nitrates and phosphates when in liquid form.
- Check compatibility first!
- Application rates:
- Liquid: ~2 L to 20 L/ha
- Solid (K-humate): ~2 kg to 5 kg/ha.

Fulvic Acid

- Another biologically active fraction of humates.
- Lower molecular weight than humic acid.
- Smaller sized molecule.
- Structurally simpler nature and high bioactivity means it is a great bacterial food.
- Ideal for foliar applications (powerful chelator)
 Small molecular size, high exchange/surface area.
 - Still commonly used for soil application though.

Using Fulvic Acid

- Soluble in both acid and alkaline conditions.
- More versatile than humic acid as less compatibility issues.
- Application rates (check product labels):
 Liquid: ~2 L to 20 L/ha
 - Solid (fulvic powder): ~100g to 3 kg/ha.

Humates

- Humates, Humic Acid and Fulvic acid improve uptake efficiency of whatever they are combined with.
- This reduces the need/dependency on inputs.
- Their effect also extends to dormant nutrients in the soil improving nutrient cycling.

Seaweed Extracts

- As kelp comes from the sea, it contains broad spectrum trace minerals, enzymes and vitamins.
- Also renowned for a wide array of different carbohydrates it produces (both bacterial and fungal foods).
- Contains mannitol a powerful chelating agent and microbial stimulant.

Seaweed

- When compared to an unamended control, research has highlighted seaweed can significantly:
 - Increase soil pores.
 - Increase aggregate stability.
 - Increase soil microbial biomass.
 - Increase microbial activity.

Liquid Fish

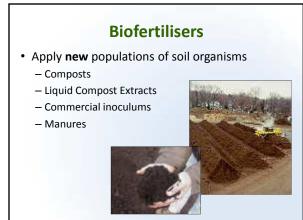
- Fish Hydrolysate
 - Enzymatically digested.
 - Not heat treated (max 50°C).
 - Higher presence of complex carbon chains due to less physical processing.
 - Higher oil content.
 - Fungal food.
- Fish Emulsion
 - Heat treated so complex carbon chains are denatured and broken down.
 - Bacterial food.

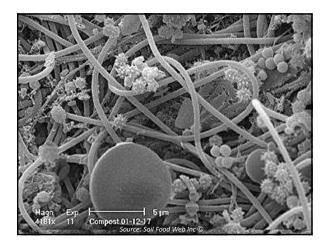
Plant Teas

- Processing (often soaking) plant material to make a liquid extract (oil or water).
- Contains minerals (nutrition), carbon chains (food source) and phyto-compounds (pest and disease mgmt) = ideal plant and microbe food.

- Rosemary

- Aloe vera
- Comfrey Garlic
- Nettle
- Anything!
- Lucerne


Feeding Soil Microbes


- Bacterial Foods
- Simple sugars and carbohydrates
 Molasses, Sugars,
- Fulvic acid
- Fish Emulsions
- Seaweed/Kelp Extracts
- <u>Protozoa Foods</u>
 Bacteria
- <u>Fungal Foods</u>

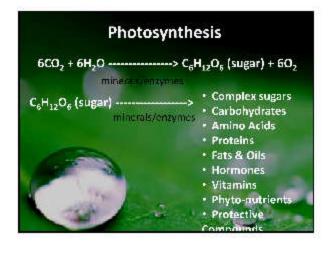
 <u>Complex</u> carbohydrates and complex organic molecules
 - Fish Hydrolysate, Fish Oils
 - Seaweed/Kelp Extracts
 - Humic acid
- <u>Nematode Foods</u>

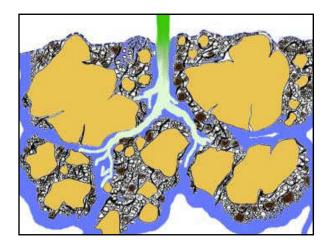
 Bacteria and Fungi

 Earthworm Foods
 - Protozoa and Fungi

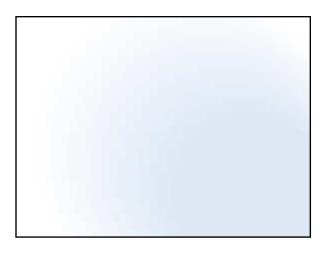
Remineralising, balancing and building carbon in soils is a long term goal. Short term crop management is also required in tandem and optimal crop management (year after year) will simultaneously contribute to building soil fertility.

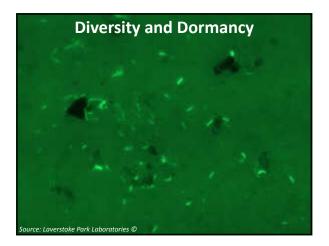
The Role of a Foliar

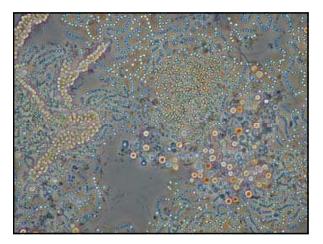

Foliar applying outrients is more efficient than soil applied:
Bypass soil imbalances
No outrient antagonism (competition)
No leaching, no volatilisation
Less fortiliser required
Nutrients are targeted directly, onto plant surfaces for subsequent absorption

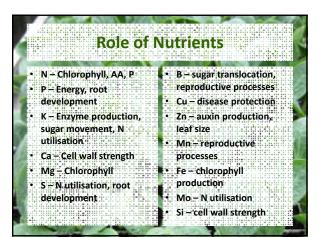


The Biological Link to Foliar Applied Nutrition


- Foliar applied nutrients is actually all about microbial stimulation.
- When calculated back, the amount of nutrient applied via foliar applications is very small.
- But those small amounts stimulate photosynthesis and hence sugar production.
- Those sugars etc are sent to the roots and exuded to feed soil microbes.
- Soil microbes in return, solubilise much more nutrient from the soil and feed the plant.







FEEDING THROUGH THE FOLIAGE

- Foliar feeding has been estimated to be 8 to 20 times more efficient than root feeding.
- 80% of foliar nutrients reach their mark compared with 10 - 30% soil applications.
- It has taken a long time to gain mainstream acceptance and adoption of the philosophy.

 Many previous trials have produced mixed results. An understanding of the technology & appropriate application methods should limit variations in response.

MOBILITY OF NUTRIENTS All nutrients are readily absorbed into the leaves, however some are more readily translocated within the plant than others. Poor Mobility:

Good Mobility:

- Nitrogen
- Phosphorus .
- Potassium
- Magnesium •
- Manganese •
- Copper Iron

Silicon

Calcium

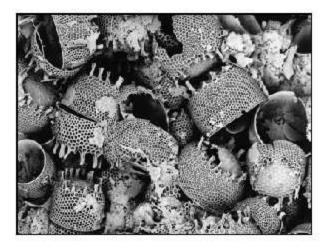
Boron

• Zinc

Testing the older leaves may help • give a true indication of mobile nutrient deficiencies

Foliar Programs

Leaf Test Monitoring


Crop specific

Silicon

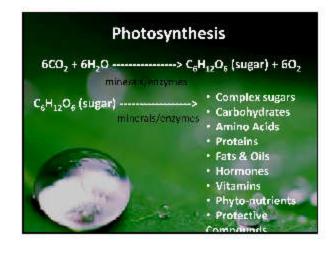
- · Classically speaking, not an essential element, but beneficial.
- However, silicon is the "essential non-essential" in ecological production systems.
- · Si enhances Ca uptake.
- Both Si and Ca are deposited in cell walls.
- · Si is an inducer of the plants immune system boosting resistance against insects and disease.
- · Improves frost, heat, drought, salinity, sodium and heavy metal resistance.

Calcium

- Ca is the trucker of all minerals.
- Ca is deposited in cell walls and improves. nutrient uptake of all elements into the cells.
- Highly immobile.
- Ca is a cell strengthener (along with Si) improving pest and disease resistance.
- Ca improves quality of all crops.
- Role in regulating sap pH.
- Requires B to bring its benefit.

Potassium

- Important for sugar translocation - sizing up fruit.
- Improves flavour and guality.
- Crucial role in regulating sap pH.
- Important for protein synthesis brix/quality.
- Highly mobile.
- Use sap meter on young and old leaves.



Synergism

- Always apply carbon with nutrients.
- · Always apply B with Ca.
- Even better, combine Si with B and Ca.
- Include Mg with P applications.
- Include Mo, K, S with N applications.

Sustainable Agriculture

 Although there is much to learn and we do not know the full long term impacts of all inputs; remember:

- "To every action there is an equal and opposite reaction"
- Guiding Philosophy: Does an input or practice increase or decrease soil biological health?

